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Studies in Biomimetic Polyether Synthesis:

Synthesis of an A~Ring Subunit of Etheromycin.
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University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, UK.

Abstract: The p-hydroxyketones 7, 20, and 22 were prepared by stereocontrolled aldol reactions
of (5)- and (R)-18 with the enal 8. Acetonide hydrolysis gave the bicyclic acetals 23-25, while the
benzoate 26 gave the tetrahydropyran 6, corresponding to an A-ring subunit for 2-epi-etheromycin.

Etheromycin (1), an ionophore antibiotic isolated from S. Hygroscapicus, is characterised structurally
by a complex array of six ether rings (A-F) with a multitude of stereocentres.! In studies towards a biomimetic2
synthesis of etheromycin, we have demonstrated3 that the BCD/CDE ring systems in 2 and 3 (Scheme 1) can
be assembled using appropriate polyepoxide — polyether cyclisation cascades.4 More elaborate cyclisations
such as 4 — 8, directed towards the complete polyether skeleton, require access to a suitable C1—Cj1 subunit to
act as a precursor for the AB rings. We have now examined the acid-promoted cyclisation behaviour of a series
of potential C1~Cj segments, and have found that formation of the A-ring derivative 6 can be efficiently
accomplished.

Scheme 1

The proposed cyclisation cascade for etheromycin, 4 - §, requires the 7-OH to form the A-ring
hemiacetal as the 9-OH triggers the triepoxide opening (solid arrows in 4). For this to be synthetically viable, an
alternative cyclisation mode for 4 (dashed arrow), involving bicyclic acetal formation at the C3 ketone by the 7-
and 9-OH groups, must be less favourable. It was therefore desirable to first examine the cyclisation
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preferences of an appropriate C1—Cj1 segment alone. For this study, we targeted the ketone 7, corresponding to
2-epi-etheromycin, together with other readily accessible aldol isomers derived from the a-methylene-B-alkoxy

aldehyde 8.
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An efficient, multi-gram synthesis of the pivotal aldehyde 8 is outlined in Scheme 2. An Evans aldol
reaction’ between the chiral imideS 9 and the aldehyde 10 was followed by formation of the Weinreb amide”.8
11. After protecnon as its ters-butyldimethylsilyl ether 12, this was directly converted into the allylic alcohol
13, [a1 D =-15.9° (¢ 0.66, CHCl3), using the vinyl lithium reagent derived from the stannane 14.9 On a large
scale (2100 mmol), a better ‘procedure involved the initial formation of the -ketophosphonate 15. Reaction of
15 with formaldehyde, promoted by K2CO3, then gave 13 in 75% overall yield. After O-silylation, the
reduction10 16 — 17 proceeded with 84% ds using LiAlHy, as expected!! from Felkin-Anh control. Finally, a
series of protecting group manipulations on 17, followed by a Dess-Martin12 oxidation, then gave the
enantiomerically pure enal 8, [a]zﬂ)= +12.2° (¢ 0.26, CHCl3), in 65% overall yield (29% from 10).
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Scheme 2 (a) "BuyBOTY, iPryNEt, CH,Cly, 0 °C, 30 min; 10, —78 °C, 2 h; Hy05; (b)) HN(Me)OMe.HCI,
Me3Al, THF, 0 °C, 2 b; (c) 'BuMe3SiCl, imidazole, cat. DMAP, DMF, 25 °C, 15 h; (d) 14, "BuLi, THF, -78 — 0
°C; 12, -78 — 0 °C, 15 min; (¢) (MeO);P(O)CH,Li, THF, —78 °C, 2 b; (/) ag. HCHO, K3CO3, THF/H,0, 25 °C, 3
b; (g) "BuPhoSiCl, imidazole, CHaCla, 25 °C, 1 b; (4) LiAlHy, Et0, ~78 °C, 10 min; ;) AcOH, THF/H20, 40 °C,
12 b; () (MeO);CMes, PPTS, CH;Cly, 25 °C, 4 b; (k) TBAF, THF, 25 °C, 2 h; (/) Dess-Martin periodinane,
CH;Cla, 25 °C, 25 min,

" Using the dipropionate reagents!3 (R)- and (5)-18.(Scheme 3), several highly stereocontrolled aldol
couplings were next performed. The e-methylene-B-alkoxy aldehyde 8 exhibited a low x-facial selectivity,14 yet
contributed to the observed stereoselectivities for these aldol reactions by double asymmetric induction. Addition
of the E dicyclohexylenol borinate13¢ (R)-19 to 8 in Et20 smoothly gave the anti-anti aldol adduct 20 in >95%
ds. In contrast, however, various Z enol borinates derived from (R)-18 proved to be insufficiently reactive and
failed to add cleanly to 8. This necessitated the use of more reactive metal enolate derivatives to achieve syn
selective aldol additions. Using the Z tin(II) enolatel3b (R)-21 in CH2Cly, the syn isomer 22 was now easily
prepared in 92% ds. In these two cases, the chiral enolate contributes a high level of diastereofacial selectivity
for preferred si-face attack on the aldehyde 8, giving the (55) adducts 20 or 22. In a similar manner, reaction
with the enantiomeric tin(II) enolate (5)-21 gave the syn isomer 7 (via mismatched re-face attack on 8) in 86%
ds. The two syn-aldol-isomers 7 and 22 could also be selectively prepared using the corresponding titanium
enolates from (5)- and (R)-18, respectively.14
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The cyclisation behaviour of these three keto acetonides was next investigatéd. To-minimise
dehydration to-the enone,. the acétonide hydrolysis was-best accomphshed usifig 0.5 M-HCl in THF (1:2 by
volume) at room ‘temperdtire for 6-10 h. Under these ‘conditions; the"aldol addnct 22‘ havmg the (55)
configuration, cleanly gave the bicyclic acetal 23, [a]p =~33° (¢ 2.1, CHCly), in 85% y;eld For the ketone
20, however, this led to a mixture of open-chain keto triol, hemiacetal, and the bicylic. acetal 24, Further
treatment of this mixture with Dowex® acid resin (50X 12-400) in MeOH/(MeO)3CH (10 : 1) gave 24 in'70%
overall yield. Appropriate 'H NMR decoupling and NOE difference experiments8 confirmed the stereochemistry
and indicated that these two bicyclic acetals adopted a chair-chair conformation. Using asumlar prooedure for
the ketone 7, which has the (5R) configuration, gave a 69% yield of the blcychc acctaL 25, [a] D =-48.6" (¢
1.1; CHCl3) — now havihg thie less stable, Chair-boat conformauon
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Scheme 3 (a) (R)-18, (c-CgH11)2BCl, EuN, E0, 0 °C, 2.5 b; 8, ~78 — —20 °C, 16 b; (b) (R)- or (5)-18,

Sn(OTf)3, EuN, CHyCly, —78 °C, 2 b; 8, 78 — -50 °C, 3 b; {c) ag. 0.5 M HCI, THF, 25 °C, 6-10 b; () Dowex®

50X H* resin, MeOH, (MeO);CH, 25 °C, 10 min; (¢) (PhCO);0, Et3N, DMAP, CH,Cly, 25 °C, 15 b; (f) PPTS,
. MeOH, (MeO)3CH, 25 °C, 8 h.

In the (5R) series, simply protecting the 5-OH as its benzoate prevented the undesired formation of the
bicyclic acetal (presumably due to further destabilisation of the chair-boat conformation in the 5-benzoate of
25) Thus acid hydrolysis of the acetonide in 26, followed by treatment with MeOH/(MeO)3CH, gave only 6,
[a]B = +59.8" (c 1.1, CHCl3), in 74% yield. This has the A-ring tetrahydropyran as its methyl acetal between
the 7-OH and the Cj ketone, with the 9-OH available to form the etheromycin B-ring.

In conclusion, we. have found that control of extended cyclisation cascades, such as 4 — 5 in Scheme
1, appears to be féasible provided the S—OH is carried through as its benzoate. Further studies duected towards
the biomimetic synthesis of etheromycin are underway.
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